Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(5): 3604-3618, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558460

RESUMO

BACKGROUND: Intensity modulated brachytherapy based on partially shielded intracavitary and interstitial applicators is possible with a cost-effective 169Yb production method. 169Yb is a traditionally expensive isotope suitable for this purpose, with an average γ-ray energy of 93 keV. Re-activating a single 169Yb source multiple times in a nuclear reactor between clinical uses was shown to theoretically reduce cost by approximately 75% relative to conventional single-activation sources. With re-activation, substantial spatiotemporal variation in isotopic source composition is expected between activations via 168Yb burnup and 169Yb decay, resulting in time dependent neutron transmission, precursor usage, and reactor time needed per re-activation. PURPOSE: To introduce a generalized model of radioactive source production that accounts for spatiotemporal variation in isotopic source composition to improve the efficiency estimate of the 169Yb production process, with and without re-activation. METHODS AND MATERIALS: A time-dependent thermal neutron transport, isotope transmutation, and decay model was developed. Thermal neutron flux within partitioned sub-volumes of a cylindrical active source was calculated by raytracing through the spatiotemporal dependent isotopic composition throughout the source, accounting for thermal neutron attenuation along each ray. The model was benchmarked, generalized, and applied to a variety of active source dimensions with radii ranging from 0.4 to 1.0 mm, lengths from 2.5 to 10.5 mm, and volumes from 0.31 to 7.85 mm3, at thermal neutron fluxes from 1 × 1014 to 1 × 1015 n cm-2 s-1. The 168Yb-Yb2O3 density was 8.5 g cm-3 with 82% 168Yb-enrichment. As an example, a reference re-activatable 169Yb active source (RRS) constructed of 82%-enriched 168Yb-Yb2O3 precursor was modeled, with 0.6 mm diameter, 10.5 mm length, 3 mm3 volume, 8.5 g cm-3 density, and a thermal neutron activation flux of 4 × 1014 neutrons cm-2 s-1. RESULTS: The average clinical 169Yb activity for a 0.99 versus 0.31 mm3 source dropped from 20.1 to 7.5 Ci for a 4 × 1014 n cm-2 s-1 activation flux and from 20.9 to 8.7 Ci for a 1 × 1015 n cm-2 s-1 activation flux. For thermal neutron fluxes ≥2 × 1014 n cm-2 s-1, total precursor and reactor time per clinic-year were maximized at a source volume of 0.99 mm3 and reached a near minimum at 3 mm3. When the spatiotemporal isotopic composition effect was accounted for, average thermal neutron transmission increased over RRS lifetime from 23.6% to 55.9%. A 28% reduction (42.5 days to 30.6 days) in the reactor time needed per clinic-year for the RRS is predicted relative to a model that does not account for spatiotemporal isotopic composition effects. CONCLUSIONS: Accounting for spatiotemporal isotopic composition effects within the RRS results in a 28% reduction in the reactor time per clinic-year relative to the case in which such changes are not accounted for. Smaller volume sources had a disadvantage in that average clinical 169Yb activity decreased substantially below 20 Ci for source volumes under 1 mm3. Increasing source volume above 3 mm3 adds little value in precursor and reactor time savings and has a geometric disadvantage.


Assuntos
Braquiterapia , Radioisótopos , Itérbio/química , Nêutrons , Modelos Teóricos , Fatores de Tempo
2.
Pract Radiat Oncol ; 14(1): 70-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37652344

RESUMO

PURPOSE: The goal of this study was to commission the use of a magnetic resonance linear accelerator (MR-linac; Unity) for imaging of gynecologic high-dose-rate (HDR) brachytherapy. This included optimizing imaging protocols and workflow development. METHODS AND MATERIALS: T1-weighted and T2-weighted HDR imaging protocols were optimized on the Unity for HDR gynecologic imaging and treatment planning. Phantom measurements using these protocols were performed to determine geometric distortion and to assess reconstruction accuracy of the applicator compared with the ground truth computed tomography image. A treatment plan was created within the treatment planning system that was then delivered to a phantom. New workflows were developed which were tested with a full dry run with a healthy volunteer including patient transfer, anesthesia considerations, and data transfer. Validation of the workflow was completed on 1 patient who received imaging on both the Unity magnetic resonance imaging (MRI) and on a dedicated 3 Tesla MRI simulator. RESULTS: Imaging analysis results were favorable with MR-linac images with a maximum distortion of 0.96 mm and a 1.36-mm over a 350-mm diameter spherical volume on the T1- and T2-weighted images, respectively, and the maximum effect of the applicator was 0.36 ppm of the main magnetic field. Reconstruction uncertainties of the Venezia applicator's tandem and 2 lunar-ovoids on the MR-linac images were within the 2-mm tolerance of the International Commission on Radiation Units and Measurements Report 89. Treatment planning and delivery was performed on the MR-HDR quality assurance phantom without issue. Dry run and healthy volunteer imaging showed adequate performance of both vital monitoring and HDR equipment. For the patient for which both the Unity MRI and 3 Tesla images were acquired, 95.78% and 95.80% of the high risk clinical target volume received 100% of the dose, respectively. Both plans were considered clinically acceptable. CONCLUSIONS: Unity MR-linac images were successfully used in gynecologic HDR brachytherapy treatment planning, and a usable workflow was established.


Assuntos
Braquiterapia , Humanos , Feminino , Braquiterapia/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Fluxo de Trabalho , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Med Phys ; 50(10): 6469-6478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37643427

RESUMO

BACKGROUND: Multiple approaches are under development for delivering temporary intensity modulated brachytherapy (IMBT) using partially shielded applicators wherein the delivered dose distributions are sensitive to spatial uncertainties in both the applicator position and shield orientation, rather than only applicator position as with conventional high-dose-rate brachytherapy (HDR-BT). Sensitivity analyses to spatial uncertainties have been reported as components of publications on these emerging technologies, however, a generalized framework for the rigorous determination of the spatial uncertainty tolerances of dose-volume parameters is needed. PURPOSE: To derive and present the population percentile allowance (PPA) method, a generalized mathematical and statistical framework to evaluate the tolerance of temporary IMBT approaches to spatial uncertainties in applicator position and shield orientation. METHODS: A mathematical formalism describing geometric applicator position and shield orientation shifts was derived that supports straight and curved applicators and applies to serial and helical rotating shield brachytherapy (RSBT) and direction modulated brachytherapy (DMBT). The PPA method entails defining the percentage of a patient population receiving a given therapy that is, allowed to receive dose-volume errors in the target volume and specified organs at risk of a defined percentage or less, then determining what combinations of applicator position and shield orientation systematic errors would be expected to produce that outcome in the population. The PPA method was applied to the use case of multi-shield helical 169 Yb-based RSBT for cervical cancer, with 45° and 180° shield emission angles. A total of 37 cervical cancer patients were considered in the population, with average (± 1 standard deviation) HR-CTV volumes of 79 cm3  ± 37 cm3 and optimized baseline treatment plans (no spatial uncertainties applied) created for each patient to meet dose-volume requirements of 85 GyEQD2 (equivalent uniform dose in 2 Gy fraction), with D2cc tolerance doses of 90 GyEQD2 , 75 GyEQD2 , and 75 GyEQD2 for bladder, rectum, and sigmoid colon, respectively. RESULTS: For the PPA requirement that 90% of cervical cancer patients receiving multi-shield helical RSBT could have a maximum dose-volume uncertainty of 10% for high-risk clinical target volume (HR-CTV) D90 (minimum dose to hottest 90%) and bladder, rectum, and sigmoid colon D2cc (minimum dose to hottest 2 cm3 ), the tolerance systematic applicator position and shield orientation uncertainties were approximately ± 1.0 mm and ± 4.25°, respectively. For ± 1.5 mm and ± 5° systematic applicator position and shield orientation tolerances, 90% of the patients considered would have a maximum dose-volume uncertainty of 12.8% or less. CONCLUSION: The PPA method was formalized to determine the temporary IMBT spatial uncertainty tolerances that would be expected to result in an allowed percentage of a population of patients receiving relative dose-volume errors above a defined percentage. Multi-shield, helical 169 Yb-based RSBT for cervical cancer was evaluated and tolerances determined, which, if applied on each treatment fraction, would represent an extreme situation. The PPA method is applicable to a variety of temporary IMBT approaches and can be used to rigorously determine the design parameters for the delivery systems such as mechanical driver motor accuracy, shield angle backlash, applicator rotation, and applicator fixation stability.


Assuntos
Braquiterapia , Neoplasias do Colo do Útero , Feminino , Humanos , Braquiterapia/métodos , Neoplasias do Colo do Útero/radioterapia , Dosagem Radioterapêutica , Rotação , Reto , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Med Phys ; 47(12): 6430-6439, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33051866

RESUMO

PURPOSE: To present a system for the treatment of prostate cancer in a single-fraction regimen using 169 Yb-based rotating shield brachytherapy (RSBT) with a single-catheter robotic delivery system. The proposed system is innovative because it can deliver RSBT through multiple implanted needles independently, in serial, using flexible catheters, with no inter-needle shielding effects and without the need to rotate multiple shielded catheters inside the needles simultaneously, resulting in a simple, mechanically robust, delivery approach. RSBT was compared to conventional 192 Ir-based high-dose-rate brachytherapy (HDR-BT) in a treatment planning study with dose escalation and urethral sparing goals, representing single-fraction brachytherapy monotherapy and brachytherapy as a boost to external beam radiotherapy, respectively. A prototype mechanical delivery system was constructed and quantitatively evaluated as a proof of concept. METHODS: Treatment plans for twenty-six patients with single fraction prescriptions of 20.5 and 15 Gy, were created for dose escalation and urethral sparing, respectively. The RSBT and HDR-BT delivery systems were modeled with one partially shielded 999 GBq (27 Ci) 169 Yb source and one 370 GBq (10 Ci) 192 Ir source, respectively. A prototype angular drive system for helical source delivery was constructed. Mechanical accuracy measurements of source translational position and angular orientation in a simulated treatment delivery setup were obtained using the prototype system. RESULTS: For dose escalation, with equivalent urethra D10% , PTV D90% for RSBT vs HDR-BT increased from 22.6 ± 0.0 Gy (average ± standard deviation) to 29.3 ± 0.9 Gy, or 29.9 % ± 3.0%, with treatment times of 51.4 ± 6.1 min for RSBT and 15.8 ± 2.3 min for 10 Ci 192 Ir-based HDR-BT. For urethra sparing, with equivalent PTV D90 % , urethra D10% for RSBT vs HDR-BT decreased for RSBT vs HDR-BT from 15.6 ± 0.4 Gy to 12.0 ± 0.4 Gy, or 23.1% ± 3.5%, with treatment times of 30.0 ± 3.7 min for RSBT and 12.3 ± 1.8 min for HDR-BT. Differences between measured vs predicted rotating catheter positions (corresponding to source position) were within 0.18 mm ± 0.12 mm longitudinally and 0.07° ± 0.78°. CONCLUSION: 169 Yb-based RSBT can increase PTV D90% or decrease urethral D10% relative to HDR-BT with treatment times of less than 1 h using a single-source robotic delivery system with treatment delivered in a single fraction. The prototype helical delivery system was able to demonstrate adequate mechanical accuracy.


Assuntos
Braquiterapia , Neoplasias da Próstata , Proteção Radiológica , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
5.
Med Phys ; 47(5): 2061-2071, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32073669

RESUMO

PURPOSE: To assess the capability of an intracavitary 169 Yb-based helical multishield rotating shield brachytherapy (RSBT) delivery system to treat cervical cancer. The proposed RSBT delivery system contains a pair of 1.25 mm thick platinum partial shields with 45° and 180° emission angles, which travel in a helical pattern within the applicator. METHODS: A helically threaded tandem applicator with a 45° tandem curvature containing a helically threaded catheter was designed. A 0.6 mm diameter 169 Yb source with a length of 10.5 mm was simulated. A 37-patient treatment planning study, based on Monte Carlo dose calculations using MCNP5, was conducted with high-risk clinical target volumes (HR-CTVs) of 41.2-192.8 cm3 (average ± standard deviation of 79.9 ± 35.8 cm3 ). All patients were assumed to receive 25 fractions of 1.8 Gy of external beam radiation therapy (EBRT) before receiving 5 fractions of high-dose-rate brachytherapy (HDR-BT). For each patient, 192 Ir-based intracavitary (IC) HDR-BT, 192 Ir-based intracavitary/interstitial (IC/IS) HDR-BT using a hybrid applicator with eight IS needles, and 169 Yb-based RSBT plans were generated. RESULTS: For the IC, IC/IS, and RSBT treatment plans, 38%, 84%, and 86% of the plans, respectively, met the planning goal of an HR-CTV D90 (minimum dose to hottest 90%) of 85 GyEQD2 (α/ß = 10 Gy). Median (25th percentile, 75th percentile) treatment times for IC, IC/IS, and RSBT were 11.71 (6.62, 15.40) min, 68.00 (45.02, 80.02) min, and 25.30 (13.87, 35.39) min, respectively. 192 Ir activities ranging from 159.1-370 GBq (4.3-10 Ci) and 169 Yb activities ranging from 429.2-999 GBq (11.6-27 Ci) were used, which correspond to the same clinical ranges of dose rates at 1 cm off-source-axis in water. Extra needle insertion and planning time beyond that needed for intracavitary-only approaches was accounted for in the IC/IS treatment time calculations. CONCLUSION: 169 Yb-based RSBT for cervical cancer met the HR-CTV D90 goal of 85 Gy in a greater percentage of the patients considered than IC/IS (86% vs 84%, respectively) and can reduce overall treatment time relative to IC/IS. 169 Yb-based RSBT could be used to replace IC/IS in instances where IC/IS treatment is not available, especially in instances when HR-CTV volumes are ≥30 cm3 .


Assuntos
Braquiterapia/instrumentação , Proteção Radiológica/instrumentação , Radioisótopos/uso terapêutico , Rotação , Neoplasias do Colo do Útero/radioterapia , Itérbio/uso terapêutico , Feminino , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
Med Phys ; 46(7): 2935-2943, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054163

RESUMO

PURPOSE: To present and quantify the effectiveness of a method for the efficient production of 169 Yb high-dose-rate brachytherapy sources with 27 Ci activity upon clinical delivery, which have about the same dose rate in water at 1 cm from the source center as 10 Ci 192 Ir sources. MATERIALS: A theoretical framework for 169 Yb source activation and reactivation using thermal neutrons in a research reactor and 168 Yb-Yb2 O3 precursor is derived and benchmarked against published data. The model is dependent primarily on precursor 168 Yb enrichment percentage, active source volume of the active element, and average thermal neutron flux within the active source. RESULTS: Efficiency gains in 169 Yb source production are achievable through reactivation, and the gains increase with active source volume. For an average thermal neutron flux within the active source of 1 × 1014  n cm-2  s-1 , increasing the active source volume from 1 to 3 mm3 decreased reactor-days needed to generate one clinic-year of 169 Yb from 256 days yr-1 to 59 days yr-1 , and 82%-enriched precursor dropped from 80 mg yr-1 to 21 mg yr-1 . A resource reduction of 74%-77% is predicted for an active source volume increase from 1 to 3 mm3 . CONCLUSIONS: Dramatic cost savings are achievable in 169 Yb source production costs through reactivation if active sources larger than 1 mm3 are used.


Assuntos
Braquiterapia , Doses de Radiação , Radioquímica/métodos , Radioisótopos/química , Radioisótopos/uso terapêutico , Itérbio/química , Itérbio/uso terapêutico , Benchmarking , Dosagem Radioterapêutica
7.
Int J Radiat Oncol Biol Phys ; 105(1): 206-221, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026556

RESUMO

PURPOSE: To systematically review scientific literature on the use of intensity-modulated brachytherapy (IMBT), including static and dynamic shielding approaches, to enhance therapeutic ratio. Studies were evaluated for technique, disease site, dosimetry, applicators, dosimetric calculations, and planning algorithms. Comparisons with standard-of-care brachytherapy techniques, alternative IMBT methods, or both were performed for dose-to-target volumes, organs at risk (OARs), and treatment planning or delivery times. METHODS AND MATERIALS: Inclusion criteria were any peer-reviewed journal articles on IMBT published from January 1, 1980, to January 1, 2019, on PubMed, Google Scholar, Cochrane Library, and EBSCO databases. Two independent investigators reviewed each article for inclusion and exclusion criteria and scope. Data collected on each study included technique, source or shield material, disease site, n of study (n = number of simulated plans/treated patients), dose-to-target/OARs, and planning or delivery times. This review adhered to the Preferred Reporting Items for Systemic reviews and Meta Analyses (PRISMA). RESULTS: Database queries yielded 1734 results, which were reduced to 436 after exclusion criteria and 78 peer-reviewed journal articles after evaluation of scope. Studies per disease site were 31 for cervical; 16 for rectal; 10 for oculocutaneous; 7 for breast; 6 for prostate; and 8 for other, multiple, or no specific disease site. Eighteen studies demonstrated a significant decrease in dose to OARs (5.1%-68.2%), 11 improved treatment planning or delivery times (7.6%-99.7%), and 6 increased target coverage (18.6%-71.6%) relative to standard-of-care or alternative IMBT technique. IMBT consistently decreased dose to OAR compared with the standard of care at the cost of increased planning or delivery times. Innovations in dose calculation or planning algorithms and applicators were capable of ameliorating prolonged treatment intervals. CONCLUSIONS: IMBT techniques improved the therapeutic ratio by reducing OAR doses, facilitating dose escalation, or both. Static-shielding techniques are clinically available as a result of the advent of commercially available heterogeneity-corrected dose-calculation algorithms, whereas dynamic-shielding techniques are still preclinical.


Assuntos
Braquiterapia/métodos , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Braquiterapia/instrumentação , Feminino , Humanos , Masculino , Doses de Radiação , Proteção Radiológica/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação
8.
Int J Radiat Oncol Biol Phys ; 102(5): 1543-1550, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30092333

RESUMO

PURPOSE: To compare single-fraction 153Gd-based rotating shield brachytherapy (RSBT) for prostate cancer with conventional 192Ir-based high-dose-rate brachytherapy (HDR-BT) in a planning study that radiobiologically accounts for dose rate and relative biological effectiveness. RSBT was used for planning target volume (PTV) dose escalation without increasing urethral dose for monotherapy, or for urethral sparing without decreasing PTV dose as a boost to external beam radiation therapy. METHODS AND MATERIALS: Twenty-six patients were studied. PTV doses were expressed as equivalent dose delivered in 2 Gy fractions (EQD2), accounting for relative biological effectiveness (1.00 for 192Ir and 1.15 for 153Gd), dose protraction (114-minute repair half-time), and tumor dose response (α/ß of 3.41 Gy). HDR-BT dose was prescribed such that 90% of the PTV received 110% of the prescription dose of 19 Gy for dose escalation and 15 Gy for urethral sparing, corresponding to EQD290% values (minimum EQD2 to the hottest 90% of the PTV) of 93.9 GyEQD2 and 60.7 GyEQD2, respectively. Twenty 90.95 GBq 153Gd RSBT sources and one 370 GBq 192Ir HDR-BT source were modeled. RESULTS: For dose escalation with fresh sources, RSBT increased PTV EQD290% by 42.5% ± 8.4% (average ± standard deviation) without increasing urethral D10%, with treatment times of 216.8 ± 28.9 minutes versus 15.1 ± 2.1 minutes. After 1 half-life (240.4 days for 153Gd and 73.8 days for 192Ir), EQD290% increased 20.5% ± 9.1%. For urethral sparing with fresh sources, RSBT decreased urethral D10% by 26.0% ± 3.4% without decreasing PTV EQD290%, with treatment times of 133.6 ± 16.5 minutes versus 12.0 ± 1.7 minutes. After 1 half-life, urethral D10% decreased 20.2% ± 4.8%. CONCLUSIONS: RSBT can increase PTV EQD90% or decrease urethral D10% relative to HDR-BT at the cost of increased treatment time. Source aging reduces RSBT benefit, but RSBT remains theoretically superior to HDR-BT by >20% after 1 half-life has elapsed.


Assuntos
Braquiterapia/efeitos adversos , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Doses de Radiação , Proteção Radiológica , Rotação , Uretra/efeitos da radiação , Estudos de Viabilidade , Humanos , Masculino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
9.
PLoS Comput Biol ; 14(6): e1006165, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29933361

RESUMO

Apolipoprotein E (apoE) is a forefront actor in the transport of lipids and the maintenance of cholesterol homeostasis, and is also strongly implicated in Alzheimer's disease. Upon lipid-binding apoE adopts a conformational state that mediates the receptor-induced internalization of lipoproteins. Due to its inherent structural dynamics and the presence of lipids, the structure of the biologically active apoE remains so far poorly described. To address this issue, we developed an innovative hybrid method combining experimental data with molecular modeling and dynamics to generate comprehensive models of the lipidated apoE4 isoform. Chemical cross-linking combined with mass spectrometry provided distance restraints, characterizing the three-dimensional organization of apoE4 molecules at the surface of lipidic nanoparticles. The ensemble of spatial restraints was then rationalized in an original molecular modeling approach to generate monomeric models of apoE4 that advocated the existence of two alternative conformations. These two models point towards an activation mechanism of apoE4 relying on a regulation of the accessibility of its receptor binding region. Further, molecular dynamics simulations of the dimerized and lipidated apoE4 monomeric conformations revealed an elongation of the apoE N-terminal domain, whereby helix 4 is rearranged, together with Arg172, into a proper orientation essential for lipoprotein receptor association. Overall, our results show how apoE4 adapts its conformation for the recognition of the low density lipoprotein receptor and we propose a novel mechanism of activation for apoE4 that is based on accessibility and remodeling of the receptor binding region.


Assuntos
Apolipoproteína E4/química , Apolipoproteína E4/metabolismo , Apolipoproteína E4/fisiologia , Apolipoproteínas E/química , Humanos , Ligantes , Metabolismo dos Lipídeos/fisiologia , Lipídeos/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/química
10.
Med Phys ; 41(5): 051703, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784369

RESUMO

PURPOSE: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). METHODS: A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 µm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 µm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. RESULTS: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources. CONCLUSIONS: For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Neoplasias da Próstata/radioterapia , Catéteres , Desenho de Equipamento , Gadolínio/uso terapêutico , Humanos , Radioisótopos de Irídio/uso terapêutico , Masculino , Método de Monte Carlo , Agulhas , Níquel , Compostos de Platina , Proteção Radiológica , Radioisótopos/uso terapêutico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto/efeitos da radiação , Fatores de Tempo , Titânio , Uretra/efeitos da radiação , Bexiga Urinária/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...